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Abstract. The phase diagam of superconducting UP13 in the pressuretemperature plane, 
together with the neutron scattering data is studied within a twoampanent superconducting 
order panmeter scenario. In order to give n qualitative explanation to the experimental data a 
set of two hneaxly independent antiferromagnetic moments which emerge appropriately at the 
temperatures TN - IOT, and Tm - T, and couple to superconductivity is proposed. Sevenl 
constraints on the fourth-order coefficients in the Ginrburg-Landau free energy are obtained. 

1. Introduction 

A heavyfermion superconducting UPt3 compound is an example of unconventional 
superconductivity, in which both the gauge and the point group symmetries are broken 
in the ordered phase. At the temperature TN 5 K it undergoes an antiferromagnetic 
transition with the magnetic moments confined to the D6h basal plane; however, the long- 
range antiferromagnetic correlations have not yet been seen [ l ,  21. Far below the Ntel 
temperature, at T,, != 0.51 K ( p  = 0 bar) UPt, becomes superconducting [3, 41. There 
is another superconducting transition at Tc- E 0.46 K ( p  = 0 bar) 13, 41. This feature 
and a rich phase diagram in the magnetic field and temperature plane [SI are accepted as 
evidence of a multicomponent superconducting order parameter. There are also pressure 
experiments which strongly indicate the coupling between superconductivity and magnetism 
in U P t 3  [2, 6, 71, namely specific heat measurements under pressure. These show that 
the two critical temperatures T, and Tc- converge into one critical temperature T, above 
pc  2: 4 kbar; see figure 1 [2, 6, 71, which is the pressure that destroys antiferromagnetism 
in the system. This experiment supports the theory of a two-component order parameter 
I I ,  = (qX, qY) in a basal plane of the crystal, belonging to a two-dimensional irreducible 
representation of the hexagonal point group D6h. In this approach a complex vector $ 
couples to the magnetic moment M and the split transition is due to this interaction. 
The role of magnetism as a symmetry-breaking field coupling to superconductivity is 
revealed in neutron scattering measurements [ l ,  91. In these experiments Aeppli er a1 
established that below temperatures of the order of a superconducting transition temperature 
the neutron scattering intensity of the (1, l j 2 , O )  reflection suddenly saturates and is almost 
constant unless superconductivity occurs. There is a remarkable change in the temperature 
dependence for a superconducting system. At a temperature of the order of T, the slope 
of the neutron scattering intensity changes sign and the intensity becomes an increasing 
function of temperature; see figure 2 [ l ,  91. This is further strong evidence of the coupling 
between magnetism and superconductivity in UPtS. 

t Permanent address: Institute of Physics, Politechnika Wroctawska. Wybrzeze Wyspioliskiego 27, 
50-370 Wrodaw, Poland. 
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p (kbar ) 
Figure 1. Pressure dependence of the superconducting phase innsition tempemure [71 

Recently Joynt [ 101 discussed within a two-component order parameter approach, the 
phase diagram of UPt3 in three-dimensional magnetic-field-pressure-temperature space. 
It agrees qualitatively with measurements [Z, 5. 6, 7, 111. However, the temperature 
dependence of the magnetic moment obscrved by Aeppli er al [ I ,  91 was not taken into 
account. The contradiction here arises as follows. The magnetic Bragg peak observed in 
neuwon scattcring [ I ,  91 which is reproduced in figure 2 shows that the superconductivity is 
acting to suppress the magnetism. By thermodynamic reasoning we know that if the onset 
of superconductivity reduces the magnetism, then the onset of magnetism must reduce the 
tendency to superconductivity. The magnetism may be removed by pressure 12, 6, 71. 
We observe that as the pressure is reduced below pc  where the magnetism reappears the 
slope of the transition temperature is increased; see figure 1. In other words the critical 
temperatures T,, and Tc- are not suppressed equally by the pressure, which can be expressed 
quantitatively by an inequality as follows: 

We show that this competition between superconductivity and antiferromagnetism cannot 
be understood within the simple model of magnetism considered so far. 

The plan of the paper is as follows. In section 2 we study the previously mentioned 
pressure and magnetic field experiments in the frame of a two-dimensional superconducting 
order parameter scenario. In order to avoid the inconsistencies which follow from this 
approach we introduce a two-magnetic-moment model in section 3. Within this scenario 
we analyse the experimental data and obtain several constraints on the Ginzburg-Landau 
free energy coefficients in sections 3 ~ a n d  4. Finally we summarize the results i n  section 5. 

2. Two-component superconductivity coupled to magnetism 

In this section we review the experimental evidence which supports this modcl and then 
construct the free energy. The free energy is used to obtain the coupled order parameters of 
magnetism and superconductivity. This analysis follows [8, 14, 151. We reproduce it here 
because it  is important to consider both the temperature and pressure experiments using a 
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Figure 2. Field and temperature dependence of (1, 4.0) 191 ( U )  and (+. 0, 1) [I61 (b)  neutron 
scattering mtens,tIes. 

unified notation. In this approach we start with a free energy density: 

F = FM + Fs+ FSM (2) 

where 

(3) 
UyU(T* - TN)M2 + fp,?4M4 for T < T' 

for T > T* F M = (  U M ( T  - T,)M2 + i,6,?4M4 
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All the Ginzburg-Landau coefficients are very weakly temperature and pressure dependent, 
as can be shown in a weak-coupling microscopic theory LIZ]; hence we choose them to be 
constant. The magnetic free energy given by equation (3) has  been chosen to include the 
phenomenological saturation of M below T' [ I ,  91. The coefficients in FM (3) and F5 (4) 
are positive whereas the y coefficient in F S , ~  (5) may be chosen to be negative so @ is the 
most favourable superconducting order parameter when M is chosen to be parallel to 2. 
The superconducting order parameter $ = ($>, $s) is complex and its components @x and 
@? are written as @J = l@x[eiv' and fY = I@ylyle'+?. 

Minimization of the free energy Ieads to the following equations for the order parameters: 

G Harari and G A Gehring 

0 = UM(TM - T N )  + BUM' + yI$x12 + f f l$ Iz  01 M =  0 (6) 

where 
for T > T' 
for T .$ T* TM = 1 f. 

Y + f f  2 Tc+ Tc - - M 
Q3 
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(15) Tc. = Tc - - [ffM2 + (01 - PZ)I@~ 1'1 . 1 

ffS 

T, is the superconducting transition temperature in a system without magnetism. 
The complete solution to equations (9)-(13)-that is the explicit formulae for Tc- 
and T,, are given in appendix A (Al)  and (A2). The magnetic moment changes 
as M Z  = ( ~ l y / f l y ) ( T ~  - T )  for temperatures higher than temperature T*. then 
suddenly saturates at T' (T' - T,) and becomes constant below this temperature: 
M 2  = (ffy~/By)(T~ - T*)  in a normal (not superconducting) state. This temperature 
dependence of the magnetic moment is consistent with measurements by Aeppli et al 
[ I ,  91. They observed a kink at T* - T, and an almost constant value of the magnetic 
Bragg intensity below T* for magnetic field H > Hc2, that is when the system was not 
superconducting. The T* temperature is introduced rather artificially into our free energy 
(3) in order to fit the existing experimental data [l, 91. We shall comment more on this 
issue further into the text. 

From the free energy density FS (4) we get the linear pressure dependence of the 
superconducting transition temperature: 

( 16) 

where ao is a constant coefficient and TP a critical temperature T, at zero pressure ( p  = 0). 
We also assume the squared magnetic moment to be a linear pressure function: 

T, = TP - aop 

where MO is the magnetic moment at p = 0, MO = M ( T ,  p = 0)  and p~ ( p ~  = 
pc rr 4 kbar) is the pressure at which the antiferromagnetism vanishes. In the super- 
conducting system described by the free energy density (2) the magnetic and super- 
conducting terms compete in the coupling term (5). This interaction leads to the splitting 
of the critical temperature T, into Tc- and T,, [81: 

I Y I  B1 +8ZM2 T,, - Tc- = -- 
ffs 282 

One can establish the pressure dependence of T,, and T,. from equations (16) and (17): 
0 

0 
Tc+ = Tc+ - a+p 
Tc- = T,_ - a - p  

where 

a+ = a0 + (?) ly l - f f  2 
?. 

To obtain the proper pressure behaviour (figure 1) the following constraints must be 
fulfilled: 

a+ Z Q  and a- e%. ( 2 3  
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Together with the condition (1) they give the relations between the Ginzburg-Landau 
coefficients: 

C Harai and G A Gehring 

Now we turn to the magnetic Bragg scattering measurements [ I ,  91 (figure 2(a)). Since 
the neutron scattering intensity is proportional to M? we look at the magnetic moment and 
analyse it  as a function of temperature. Taking into account that the coupling coefficienls 
ff and y ( 5 )  are expected to be much smaller than the other G-L coefficients [12] and 
therefore neglecting terms which are higher than linear in 01 and y from equations (2)-(S) 
we obtain: 

M' = M: +awT (27) 

(28) 

where 
f f M  M: = -(TN - T " )  - ~ M T ,  
BM 

and 

for Tc- c T < T, ffs Y + f f  
BM P I  + Bz 

aM = -- 

In M 2  given by equations ( 2 7 x 3 0 )  a discontinuity arises at T = Tc- with a jump which 
is second order in the coefficients 01 and y .  Therefore it is negligible in the linear 
approximation. We present the full formula for M' in appendix A equations (A3)-(A7). It 
can be shown that even within this general description the results of this section still hold. 

Therc are two characteristic temperatures, T,, and Tc-, distinguished by the 
superconducting phase transitions; hence the change in the temperature dependence of the 
magnetic moment due to superconductivity can take place at either one of these temperatures. 
For MZ increasing with temperature up to T,, and then decreasing, i.e. for a kink at T = T,,, 
the condition 

aM > 0 for T c T,, (31) 
is required, while for a kink at T = T,. the following constraints are to be fulfilled: 

a,w 0 for Tc. c T c Tc+ (32) 
and 

aM > 0 

Condition (31) leads to the inequality 

ff I Y I  

for T c Tc.. 

whereas from (32) and (33) it follows that 

(33) 

(34) 

(35) 
1 
$4 < ff < IYI. 

It is evident that condition (34) is inconsistent with the pressure relation (ZG), while the 
conditions (26) and (35) yield the relation PI/flZ < 1 which contradicts the specific heat 
measurement data [13]. Put into words: thermodynamics requires that if the magnetic 
moment is reduced when the sample becomes superconducting then the tendency to become 
superconducting will be increased if the magnetism is removed. This implies that the 
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continuation of the phase line between normal and superconducting phases for p > pc  
should lie above T,, if it is extrapolated back to low pressures, in clear contrast to the data 
shown in figure 1 and also the more recent data of Boukhny er al [18]. 

We therefore conclude that it is not possible to explain the pressure and neutron 
scattering data in theframe of the free energy dens@ (2)-(5). This paper does not address the 
alternative possibility that the splitting of T, is due to the coupling of the superconductivity 
to the charge density wave [17, 191, except to note that even if the effect of magnetism is 
only to reduce both T,, and Tc. due to a pair breaking mechanism [19], there should still 
be a break in the slope at T,, at the pressure where magnetism is suppressed. 

In the next paragraph we analyse the possibility of the rotation and decrease of the 
magnetic moment suggested by Blount er al 1141 and Joynt [15]. The rotation of the 
magnetic moment can be equivalently described by an additional linearly independent 
magnetic moment m (mLM)  included. 

3. Two-magnetic-moment model 

In this section we consider the possibility that the magnetic moment rotates at a temperature 
of the order of T, in such a way that the observed Bragg scattering intensity is reduced. 
This requires two components of magnetization. Therefore we propose a revised G-L free 
energy density: 

(36) F = Fs + FM + F, + FSM + F,,  

F M = (  (YM (T  - T N )  M 2  + f j ? ~ M ~  

where 

(37) 

(38) 

(39) 

f f ~  (T' - TN) M 2 +  ; p M M 4  for T < T, 
for T > T, 

F, = u,(T - Tm)m' + ;@,m 4 

F,, = y'/m+it/' + a'm2[+l2 

and Fs, FSM are given by equations (4) and ( 5 ) .  T, is the Nkel temperature of the magnetic 
moment m and T, - T,. The new coefficients a, and &, in (38) are positive. This 
free energy is correct to the fourth-order in the space of M ,  m and @, For the sake 
of simplicity we have neglected the coupling term between the two magnetic moments 
and the superconducting order parameter ( m M ( p L q ;  + p;py)) assuming it to have a little 
effect on the results. Another free energy term involving M and m ( - m Z M z )  is included 
implicitly in T, and T* by a proper diagonalization of the magnetic part of the free energy 
(see appendix B). As seen from (36) and (37), the magnetic moment M is constant in the 
absence of superconductivity and equals 

(40) 
UM M 2  = -(TN - T*).  
@M 

This approximation is correct for temperatures lower than a certain temperature of the order 
of T,. We believe that this assumed temperature dependence of MZ is due to a change 
in the Fermi surface and is of exclusively microscopic origin. However, in appendix B 
we present a phenomenological explanation of this fact, when relation (B4) is fulfilled. In 
this interpretation M' becomes constant below the temperature T, equations (38) and (B7), 
i.e. the temperature at which the magnetic moment m appears. Although T ,  - T,, this 
reasoning is valid only if T, > T, which seems to be in agreement with the experimental 
data [ I ,  91. 
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Proceeding in the same way as in section 2, from the pressure requirements (I), (25) 
and the free energy density (36), we obtain the following conditions: 

where we have assumed that m disappears at the same critical pressure p~ as M does 
(17): 

Otherwise a kink in the pressure dependence of Tc- and To+ should be observed, which is 
not the case (see figure 1) [2, 6, 71. 

Since there are no coupling terms between m and M in the free energy density (36), it 
yields the same temperature dependence of M? as equations (27H30). Therefore, in order 
to obtain the appropriate temperature behaviour of M 2  [ l ,  91 (figure 2(a)) either (34) or 
(35) must be satisfied. 

Now we are able to give the final conditions for the G-L coefficients in the free energy 
density which agrees with experiment [ I ,  2, 6, 7, 91 discussed in this paper. For MZ 
increasing with the temperature up to T = Tc. and decreasing above this temperature, the 
conditions (35) and (41)-(42) are to be held. They lead to a simple constraint on a', which 
is necessary but not sufficient: 

l y l ~ i  2a'mi. (44) 
When M 2  as a function of temperature has a kink at T = Tc+, that is increases below this 
temperature and decreases above it, the conditions (34), (41) and (42) must be fulfilled and 
they yield the negative value of a': 

ff' < 0. (45) 

4. (i , 0, I) neutron scattering intensity 

We are going to consider both the magnetic moments M and m more thoroughly now. 
Here again we restrict the calculations to the terms linear in the coupling coefficients a, @, 
a' and y' .  which yields a negligible M 2  and m' discontinuity at Tc- in this approximation. 
A minimization of the free energy (36) as a function of magnelic moment m leads to the 
following temperature dependence of in2: 

where 

and 

(46) 

(47) 

We assume throughout this paper that the magnetic moments lie in the basal plane since 
the easy magnetic directions are confined to this plane. In the previous sections we 
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were considering the neutron reflections at the reciprocal-lattice point q1 = ( I .  1.0) [ I .  91 
(figure 2(a)). The magnetic Bragg scattering measurements revealed a different temperature 
dependence of the neutron scattering intensity at q 2  = ( i , O ,  I) [16] (figure 2(b)). Below a 
temperature of the order of T, the (f, 0, l )  intensity ceases to evolve and becomes constant. 
Actually, Aeppli et al I161 did not go to low enough temperatures to be positive about 
the independence of T of the measured intensity in the whole temperature range helow 
T,. Nevertheless, we assume here a constant value of the (4.0. I )  neutron scattering 
intensity below Tc+, that is, we suggest this effect to be due to superconductivity. The 
neutron scattering intensity at the reciprocal-lattice point q reflects the magnetic vectors 
perpendicular to the q vector. For the sake of simplicity we choose a magnetic moment 

MI = M + m  (50) 
perpendicular to q2 = ( i ,  0,  1) which means that M: is detected in (f, 0. I )  measurements. 
On this particular magnetic orientation we want to check, without going into the detailed 
calculation of a general case, whether the two-magnetic-moment model can interpret both 
neutron scattering experiments. It will yield some additional constraints on the G-L free 
energy coefficients (36)-(39). One of the possible configurations of the magnetic and 
reciprocal-lattice vectors considered, where instead of ql = (1. 4.0) and q2 = (4.0, I )  their 
projections on the XY plane, ( I .  4) and (4, O), were plotted, is presented in figure 3. M is 
the magnetic moment seen in ( I ,  4 , O )  neutron scattering, while MI is detected in ($ ,O .  I )  
measurements. The temperature dependence of M 2  has been considered in the previous 
paragraphs of this paper, equations (27)<30), (40). According to [I61 M: is temperature 
independent for T 6 T, - Tc+: 

M: = constant for T < c,&. (51) 
Assuming the temperature-dependent corrections to M (27)-(30) and m (46)-(49) to be 
small, experimentally estimated as about 5% of the total magnetic moment values [ I ,  91, 
we linearize M and m in T and insert them into equation (50). Then the condition (51) 
leads to the following constraints on the G-L coefficients: 

f (F ~ ) = o  
I + 8 2  ' 81 + 82 

f (-,-) y + 2 a  y'+2ff' = o  
281 281 

where 

We solve equations (52) and (53) and obtain 

According to experiment [13], 81 and ,62 coefficients should obey the following relation: 

81 > 8 2  > 0. (57) 
From ( 5 3 4 7 )  we then have: 

B m  --y - y ' >  0 
BM 
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and 
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Bm -a + y' + a' z 0. 
BM 

(59) 

Since y ( 5 )  is negative, inequality (58) leads to a negative y' value and finally relation (58) 
is equivalent to: 

B m  

BM 
y ' =  - I f  lY ' l  ' -IYI.  

Therefore, we have obtained conditions ( 5 3 ,  (56) and (59), (60) which are to be fulfilled 
by G-L free energy coefficients. However, we cannot forget about the constraints which 
follow from the M' temperature evolution requirements (34), (35) and those which are 
necessary to fit the pressure data (41). (42). One can easily check that the conditions (34) 
(kink in M Z  at T = Tc+) and (59), (60) lead to a negative value of a', while the constraint 
(35) (kink in M 2  at T = T,) along with equations (59), (60) yield a positive CY' value. 
From equations (41), (42) we get more information about the magnetic moment values at 
pressure p = 0, that is MO (17) and in0 (43). It is more convenient for this purpose to 
use the experimentally established ,92/,!31 ratio: @z/,91 0.4 [13], just to get rid the of @ I  
and 82 coefficients in (42). The relation &-/PI = 0.4 along with the 81 (55) and 82 (56) 
formulae allow the reduction of one of the coupling coefficients through the equation: 

l B m  
a'= - 4 (lu'l- E l v l )  + g(lvl M -a) 

so we can consider y' ,  y and 01 parameters as the only independent ones in all the conditions. 
It is straightforward to show that 01' given by equation (61) obeys equations (34), (35) and 
(59), (60). Returning to MO and mo magnitudes, for CY > IyI (34), we obtain from (41), (42) 
that 

mi z goMi (62) 
where 

The condition above should be fulfilled when a kink in (1. f ,  0) neutron scattering intensity 
appears at T, (34). In order to have mo, MO solutions of (41), (42) when condition (35) is 
hcld, that is in the ease of the (1 ,  f ,  0) neutron scattering peak at Tc-, another constraint 
has to be fulfilled: 

(63) 

Inequality (63) is a necessary condition to make sense of relations (41) and (42). Finally, 
we obtain from (41), (42) the constraint on the relative mo and MO values: 

7 
a' c sly'[. 

L Y - ~ I Y I  mi I Y I - ~  
a ly r l  -a( Mi a' 

< - < -  

and another condition which follows directly from (64): 

IYY'I - Ivl" - l Y ' b  > 0. (65) 
We have been looking here at the additional constraints on the fourth-order coeflicients in 
the Ginzburg-Landau free energy that follow from the requirement of a constant magnetic 
moment detected in  (i, 0 , l )  neutron scattering measurements [16] (figure 2(b)). We have 
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assumed T, to be a characteristic temperature at which the magnetic moment M1 (51) 
becomes constant. Nevertheless it is straightforward to show that M i  cannot be constant 
above T,,. Let us look at the temperatures T =- T ,  first. Since T, is the Nkel temperature 
for m (B6), there is only one magnetic moment A4 left at T > T,. M I  is simply M ' s  
projection in a particular direction (figure 3) and shows the same temperature dependence 
as M does (B9). Therefore Mi is a decreasing function of temperature for T > T, as M is 
(B9). In the temperature range Tc+ < T < T,, on the other hand, we obtain from the free 
energy (B8) a constant MZ value (40) and mz = (T, - T)or,/B,. Therefore (50) cannot 
lead to a constant M I  value, otherwise a, = 0 causing m to vanish, making no sense for 
this approach. 

+ 
Figure 3. The relmve Onentxion Of the magnetic moments M ,  m and M I  and the n e u ~ o n  
suueriog vectors 91 and 4%. where wnq = f .  

5. Conclusions 

We have considered superconducting UP13 in zero magnetic field. Our interest has been 
focused on the hydrodynamic pressure [2 ,6 ,7]  and neutron scattering experiments [ I ,  9, 161. 
We have shown that the pressure dependence of the transition temperatures and the abrupt 
change in the (1.  $, 0) neutron scattering intensity at T - T, [ I ,  91 cannot be explained 
quantitatively within a simple two-component superconducting order parameter which 
couples to one-component antiferromagnetism. As one way of reconciling this problem 
we have suggested the existence of another magnetic moment which emerges at T - T,. 
This genera lkd  approach of the two independent magnetic moments coupling to the 
superconductivity allowed us to obtain a concise picture of the phenomena discussed and 
yields several stringent constraints on the fourth-order coefficients in the Ginzburg-Landau 
free energy density (36). We have concluded that the kink in a (1. 1.0) neutron scattering 
intensity may exist at T, when relations (34), (41) and (42) between the G-L coefficients 
are obeyed, or at Tc- under the conditions of (35) and (41), (42). If we interpret the 
results of ( i ,  0, 1) Bragg magnetic scattering experiments [I61 as characteristic features 
for all temperatures below T, and assume that the magnetic moment orientation is as 
in figure 3, we can express the j?, and Bz G-L coefficients in terms of the coupling 
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constants (55) and (56). The requirement 81 > 02 > 0 leads to a negative value of the 
coupling constant y' (39, 60) and a negative a' (39) coefficient when a peak in ( I ,  $, 0) 
neutron scattering intensity is at Tc+, or a positive E' value for a peak at T'.. These 
considerations also yield some constraints on the zero-pressure magnetic moments values 
(62), (64) and coupling coefficients (63). (6.5). We have evaluated constraints (62)465) for 
the experimentally established ratio 82/81 2 0.4 [ 131. This given value of ,f?2/,61 allows us 
to express one of the G-L coupling coefficients in terms of the others (61). 

We have considered two magnetic moments in a crystal basal plane only. However, 
we cannot exclude any out-of-plane moments. There is always the possibility of 
magnetic structure following a recently discovered structural modulation in a crystal 1171. 
Unfortunately, the resolution of neutron scattering measurements may be too small to be 
decisive. For completeness it should he added that despite the large amount of experimental 
evidence the main racts seem not to be established-in particular the phase diagram in the 
p-T plane measured by Boukhny et al [18] differs from [2] because where the slope of the 
Tc- curve is positive condition ( I )  does not hold. Moreover, recent x-ray resonant magnetic 
and neutron magnetic scattering measurements [19] show no correlation between the split 
superconducting transition and the weak antiferromagnetic order in Wt3: as they also find 
no evidence of magnetic moment rotation their results, together with the conclusions of this 
papcr, suggest other possible issues such as symmetry-breaking fields of structural origin 
[17] and the existence of two one-dimensional superconducting states. 

G Haran' and G A Gehring 
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Appendix B 

The complete magnetic free energy for the magnetic moments M and m (m I M )  at the 
temperatures T < T* is 

1 1 
F , n , , , , = A n , ( T - T ~ ) M 2 + - B n , M 4 + A v , ( T - T * ) m Z + - B , m 4 + C m z M 2  

2 2 
where TN and T* are the Niel temperatures for M and m magnetic moments respectively. 

@ I )  

We assume TN > T'. From the minimization of Fmogn one gets: 

and 
A ,  

Bn, B, - Cz B, 
(A,Bn,T* - An,CTN) - -T 

2 1 
m =  

For a particular choice of the coupling coefficient 

An, 
A, 

C = - B  m 

M' attains a constant value: 

2 ( T N - T * )  M =  
A; B,,, - A$ B, 

and 
Am 
Bm 

m2 = - (Tm - T )  

where 
A ; B ~  - A & B , T ~ ~ T * ~ ~  

T, = 
A; B~ - A& B, 

The temperature T* should be of the order of TN to give a positive value of T,. From (B.5) 
and (B6) we can see that the magnetic free energy can be written as 

1 1 
2 F , , , , = a n , ( T * - T N ) M 2 + - B n r M 4 + a m ( T -  T,)m2+2&m4 (B8) 

for T i T,, and 
1 

Fmnpn = U M  (T  - T N )  M' + , B M ~  (B9) 

for T > T,. 

paper. The new G-L coefficients are given in terms of the old ones as 
This is the free energy of the two magnetic moments (37)-(38), that we use in this 

These considerations are relevant only when condition (B4) is fulfilled 
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